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We develop two models to describe ion transport in variable-height micro- and nanochannels. For the first model,
we obtain a one-dimensional (unsteady) partial differential equation governing flow and charge transport through a
shallow and wide electrokinetic channel. In this model, the effects of electric double layer (EDL) on axial transport
are taken into account using exact solutions of the Poisson-Boltzmann equation. The second simpler model, which
is approachable analytically, assumes that the EDLs are confined to near-wall regions. Using a characteristics analysis,
we show that the latter model captures concentration polarization (CP) effects and provides useful insight into its
dynamics. Two distinct CP regimes are identified: CP with propagation in which enrichment and depletion shocks
propagate outward, and CP without propagation where polarization effects stay local to micro- nanochannel interfaces.
The existence of each regime is found to depend on a nanochannel Dukhin number and mobility of the co-ion
nondimensionalized by electroosmotic mobility. Interestingly, microchannel dimensions and axial diffusion are found
to play an insignificant role in determining whether CP propagates. The steady state condition of propagating CP is
shown to be controlled by channel heights, surface chemistry, and co-ion mobility instead of the reservoir condition.
Both models are validated against experimental results in Part II of this two-paper series.

Introduction

Recent advances in fabrication technology1-5 have enabled
nanofluidic devices with long, thin channels (with characteristic
dimensions of 10-100 nm) to be leveraged for sample analy-
sis5-11 and preparation.12,13 Nanofluidic devices exploit length
scales on the order of biomolecule sizes14,15 or the thickness of
electrical double layers (EDLs). Pennathur and Santiago,3,4 and
Griffiths and Nilson7 showed that long thin nanochannels can be
used for separation on the basis of ion valence as well as mobility.
Tegenfeldt et al.2 and Pennathur et al.11 reported unique features
of DNA migration through a nanochannel device. Schoch et al.16

demonstrated the use of a nanochannel as a sensor for
antibody-antigen binding. Finally, Han et al.9 reviewed the use
of nanofluidic devices for molecular sieving. Combining the
properties of nanofluidics with microfluidic systems requires an
understanding of the interface between microchannels and
nanofluidic devices.

Complex behaviors emerge from the integration of electro-
kinetic nano- and microchannels.12,17-24 One primary phenom-
enon is concentration polarization25,26 (CP) which Pu et al.19

observed at a microchannel-nanochannel interface and described
with qualitative models. CP has also long been studied in the
context of electrokinetic transport through membrane sys-
tems27-29 which can be used for a qualitative understanding of
CP in micro- and nanochannels.19 The conventional description
of CP shows enrichment and depletion regions with molecular
diffusion boundary layers which can limit ionic fluxes and
current.30,31 Rubenstein and Zaltzman32 developed a model of
electroconvective instability and its role in overlimiting current.
In Part II of this two-paper series, we review experimental
observations of CP in microfluidic systems.

Recent studies have shown that the bulk flow effects are critical
in capturing the effects of CP.23,33-35 To our knowledge, Zangle
et al.’s conference paper36 was the first describing the coupling
of CP with bulk flow and the existence of ion concentration
shocks emerging from CP zones. Despite these descriptions,
important questions remain regarding the nature of and factors
determining the propagation of CP.
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In this paper, we present a transport model for CP in fairly
arbitrary channel geometries, which includes the coupling of CP
with electroosmotic and pressure-driven flow. Our model predicts
ion transport in channels with either nonoverlapped or overlapped
EDLs using nanochannel wall charge as the only fitting parameter.
In Part II of this two-paper series,37 we use this model to study
a series microchannel-nanochannel-microchannel geometry
where we examine the spatial and temporal evolution of CP in
comparison to experiments. We identify two possible CP regimes:
one where polarization effects remain local to channel interfaces
(CP without propagation), and another where concentration shock
waves are transmitted from these interfaces (CP with propagation).
Using a simplified, analytically approachable version of the model,
we identify major system parameters and their coupling with
CP. Analysis based on the method of characteristics yields
important new insights into the physics of CP including conditions
for the existence and propagation of CP, and asymptotic behavior
of the system.

Area-Averaged Model

We here derive a one-dimensional partial differential
equation (PDE) for transport of ionic species in a channel

system with variable height. We also present a solution
algorithm. Transport of ions in a dilute solution is described
by the following equation:

∂

∂t
ci + ∇ (ubci + νiziFEbci))Di∇

2ci (1)

where ci, Vi, zi, and Di represent concentration, mobility, valence
number, and diffusion coefficient of the ith ion, respectively (see
Table 1). uband Eb are the velocity and electric fields, respectively,
and F is the Faraday number. We consider two dominant ionic
species with subscripts 1 and 2 for positive and negative species,
respectively. We use Cartesian coordinates to describe a channel
with height h(x) (see Figure 1). Consistent with the experiments,
we will present in Part II, we assume the channel width (into the
paper) is much larger than the maximum value of h(x).

To obtain one-dimensional transport equations, we integrate
eq 1 in the y direction. Given the zero-flux condition at the walls,
these can be represented in the following form:

∂

∂t
(hcj1)+

∂

∂x
(hupc̃1

p + huec̃1
e + ν1z1FhE cj1))

∂

∂x[hD1

∂c1

∂x ]
(2)

∂

∂t
(hcj2)+

∂

∂x
(hupc̃2

p + huec̃2
e + ν2z2FhE cj2))

∂

∂x[hD2

∂c2

∂x ]
(3)

where superscripts e and p stand for electroosmotic and pressure-
driven velocity components, respectively. The overbar symbol
represents the height average operator, and the tilde is a velocity-
weighted height average so that

cji )
1
h∫-h ⁄ 2

h ⁄ 2
ci dy, uj ) 1

h∫-h ⁄ 2

h ⁄ 2
u dy,

c̃i
p ) 1

hup
∫-h ⁄ 2

h ⁄ 2
upci dy, c̃i

e ) 1

hue
∫-h ⁄ 2

h ⁄ 2
ueci dy (4)

For wide channels, area-averaged quantities for mass, momentum,
and species transport are well approximated by averages over

Figure 1. Schematic of an arbitrary variable height channel. Our model
includes advection due to electroosmosis and internal pressure gradients,
electromigration,anddiffusionofbulkandelectricdouble layer ions.External
electric field and bulk flow profiles are shown. The model allows for either
known volume flow rate or known end pressures at locations x1 and x2. The
model also uses either a specified current or a specified voltage drop.
Relatively large regions have adverse pressure gradients, while smaller
nanochannel regions have favorable pressure gradients (which are typically
small relative to the local electroosmotic flow).

Table 1. Nomenclature

parameter description parameter description

c i concentration of the ith ion u0
e electroosmotic velocity away from wall

c0 concentration of the counterion away from walla U* dimensionless characteristic velocity
c n

* dimensionless c0 in the nanochannel Un
* dimensionless characteristic velocity in the nanochannel

c r
* dimensionless c0 in the reservoir V* dimensionless shock velocity

Di diffusion coefficient of the ith ion V1
* dimensionless shock velocity in the depletion zone

E axial electric field zi valence number of the ith ion
F Faraday number ε permittivity
f, f e, f 1

p, f 2
p, f 1

e, f 2
e integral factors (functions of σ*, λ*, z2/z1) η viscosity

f � dimensionless zeta potential (function of σ*, λ*, z2/z1) e charge of proton
h channel height λ Debye length
hn

* dimensionless nanochannel height νi mobility of the ith ion
I current per width ν2

* dimensionless mobility of the coion
Q volume flow rate per width ν2n

* dimensionless mobility of the coion in the nanochannel
u axial velocity σ wall charge
up axial pressure-driven velocity ψ wall normal potential
ue axial electroosmotic velocity � zeta potential

superscript description subscript description

* dimensionless quantity i arbitrary species i
e associated with electroosmotic flow velocity 1 counterion
p associated with pressure-driven flow 2 co-ion
- standard area-average 1, 2, 3, 4, 5 micro-nano-microchannel regions
∼e area-averaged (weighted by electroosmotic velocity) 0 associated with away from EDL (bulk)
∼p area-averaged (weighted by pressure-driven velocity) n associated with nanochannel

a Mathematically defined as the Poisson-Boltzmann distribution constant (i.e., the prefactor to the exponential of scaled electric potential).
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the shallow dimension (height). Therefore, these integrals can
be interpreted as cross-sectional, area-averaged quantities.
Equations 2 and 3 are exact representations of the transport of
ionic species in terms of height-averaged quantities. However,
to bring closure to these equations we use the following
approximations:

1 At each section of the channel, the effect of wall slope on
concentrations and axial fields can be neglected (similar to
the lubrication theory assumption38).

2 To simplify our results, we approximate streamwise diffusion
fluxes with simple terms that capture only the order of
magnitude of diffusive effects.

3 We assume that diffusion and electromigration in the y
direction are in equilibrium. In other words, the time scale
governing EDL is much smaller than that of axial transport.

Under these conditions, at each section of the channel, param-
etrized Poisson-Boltzmann equations can describe the wall normal
potential and distribution of the ionic species.39 These equations
can be presented in the following nondimensional form:

c1

c0
) exp( -2

1- z2 ⁄ z1
ψ*),

c2

c0
) ( z1

-z2
)exp( -2z2 ⁄ z1

1- z2 ⁄ z1
ψ*)

(5)

d2ψ*

dy*2
)- 1

2λ*2[exp( -2
1- z2 ⁄ z1

ψ*)- exp( -2z2 ⁄ z1

1- z2 ⁄ z1
ψ*)]

(6)

dψ*

dy* |y*)(1 )-σ* (7)

where ψ* is the electric potential generated by the surface charge
nondimensionalized by the thermal voltage, 2kT/e(z1-z2) (k, T, and
e are the Boltzmann constant, temperature, and charge of proton,
respectively), and y* is the wall normal coordinate nondimension-
alized by the local channel half-height. c0, which varies in x, is the
Boltzmann distribution constant and mathematically represents the
ion concentration where ψ* is zero. We note that c0 is not the channel
centerline concentration if EDLs overlap. The centerline concentra-
tion will be c0 exp(-zieψ|y)0/kT), where ψ|y)0 is (a function of x
and)obtainedafter solving thePoisson-Boltzmannequationsubject
to the two boundary conditions at the walls (eq 7). λ* and σ* are
the nondimensional Debye length and wall charge, respectively:

λ* ) 2
h� εkT

e(z1 - z2)Fc0z1
, σ* )

σhe(z1 - z2)

4εkT
(8)

where ε is the permittivity of the electrolyte. The only
nondimensional parameters of this Poisson-Boltzmann problem
are z2/z1, λ*, and σ*. From eqs 5-7, we see that

cj2 ) c0(-z1 ⁄ z2) f(z2 ⁄ z1, λ*, σ*). (9)

The function f can be obtained by numerically solving eqs 6
and 7 (see Figure 2). These solutions can be tabulated for use
with our solution algorithm. Note that λ* varies with c0 and we
assume that σ is either constant or a function of local c0. Therefore,
from eq 9, cj2 can be closed in terms of c0, h, and known physical
constants. In general, c0 varies with x and t, and therefore, to
obtain cj2, we need separate evaluation of f for each section of
the channel at each time.

We now describe the procedure for closing other height-
averaged quantities. By integrating eq 6 in the y direction and
using eqs 5, 7, and 8 we can observe that

z1cj1 + z2cj2 +
2σ
hF

) 0 (10)

which is an expression of net neutrality and can be used to
close cj1. Using eq 5 and assuming a parabolic pressure-driven
velocity profile, up/up ) 3/2(1 - y*)(1 + y*),38 one can write
in

c̃1
p ) c0 f1

p(z2 ⁄ z1, λ*, σ*), c̃2
p ) c0(-z1 ⁄ z2) f2

p(z2 ⁄ z1, λ*, σ*)
(11)

Similarly, the electroosmotic velocity profile,
ue ) u0

e(1-ψ*/�*),39 can be used to close ue, c̃1
e, and c̃2

e.

ue ) u0
e f e(z2 ⁄ z1, λ*, σ*), c̃1

e ) c0

f1
e(z2 ⁄ z1, λ*, σ*)

f e
,

c̃2
e ) c0(-z1 ⁄ z2)

f2
e(z2 ⁄ z1, λ*, σ*)

f e
(12)

Here, u0
e is the well-known Helmholtz-Smoluchowski velocity

equal to

u0
e ) -ε�E

η
(13)

where η is the viscosity of the solution and � is the shear-plane
potential (�* ) ψy*)(1

* ). Finally, by using the solution of
Poisson-Boltzmann equation at the boundaries, we can see that

(31) Postler, T.; Slouka, Z.; Svoboda, M.; Přibyl, M.; Šnita, D. J. Colloid
Interface Sci. 2008, 320, 321–332.
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(33) Ehlert, S.; Hlushkou, D.; Tallarek, U. Microfluid. Nanofluid. 2007, .
(34) Dhopeshwarkar, R.; Crooks, R. M.; Hlushkou, D.; Tallarek, U. Anal.

Chem. 2008, 80, 1039–1048.
(35) Jin, X.; Joseph, S.; Gatimu, E. N.; Bohn, P. W.; Aluru, N. R. Langmuir

2007, 23, 13209–13222.
(36) Zangle, T. A.; Mani, A.; Santiago, J. G. NoVel DeVice for Electrophoretic

Focusing and Separation at a Microchannel-Nanochannel Interface, Proceedings
of µTAS 2007, Paris, France, October 7-11, 2007; Viovy, J. L., Tabeling, P.,
Descroix, S., Malaquin, L., Eds.; Chemical and Biological Microsystems Society:
San Diego, CA, 2007; Vol. 2, pp 1204-1206.

(37) Zangle, T. A.; Mani, A.; Santiago, J. G. Langmuir 2009, 25, 3909-3916.

Figure 2. Contour plots of integral factors introduced in the area-averaged
model for valence ratio z2/z1 )-2 and as a function of σ* and λ*. λ* is the
ratio of the local Debye length (based on c0) to the local channel half-height,
and σ* is the electric field associated with the local wall surface charge
density nondimensionalized by the local channel half-width and thermal
voltage (see eq 8). Under our local equilibrium assumption, these factors
are obtained from numerical solutions of the Poisson-Boltzmann
equation integrated in the wall normal direction.

3900 Langmuir, Vol. 25, No. 6, 2009 Mani et al.
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�) 2kT
e(z1 - z2)

f �(z2 ⁄ z1, λ*, σ*) (14)

Now that we closed all of the height-averaged quantities, we
rewrite eq 3 in terms of the introduced known functions (f factors
shown in Figure 2).

∂

∂t
(hfc0)+

∂

∂x
[h(upf2

p + u0
e f2

e + ν2z2FEf )c0]) ∂

∂x[hD2 f
∂c0

∂x ]
(15)

where all of the f factors are known functions of local c0 and h
(see Figure 2 and eq 8). Note that the axial diffusion flux is not
treated in exact form, since the bar operator and differentiation
do not commute for variable height channels. However, the form
of eq 15 is consistent with our lubrication flow approximation
(i.e., we assume that |∂h/∂x| , 1). This approximation also
provides a consistent solution for the electrochemical potential
at equilibrium (i.e., zero external field). By repeating the same
procedure for the other species, we obtain another equation for
the evolution of c0.

∂

∂t(hfc0 -
2σ
z1F)+ ∂

∂x
[h(upf1

p + u0
ef1

e + ν1z1FEf)c0 - 2ν1Eσ])
∂

∂x[hD1 f
∂c0

∂x
-

2D1

z1F
∂σ
∂ x] (16)

Lastly, conservation of mass can be used to determine the pressure-
driven flow.

∂

∂x
(hup + hu0

e f e)) 0 (17)

Equations 15, 16, 17 and 13are in closed form and can be solved
for c0, E, up, and u0

e. Two integration constants arise through the
solution of this system which can be determined by the electrical
and mechanical boundary conditions. The mechanical boundary
condition can be either a specified pressure difference between the
two ends of the channel or a known volume flow rate. The electrical
boundaryconditioncanbeanappliedvoltagedropacross thechannel
or an applied electric current through the channel. In both parts I
and II of this two-paper series, we assume a zero external pressure
difference and constant current condition, consistent with the
experiments of Part II. In addition, we assume that c0 is equal to
a known reservoir concentration at the channel ends.

Solution Method. In this section, we show how pressure-
driven flow and the electric field can be obtained in terms of
closed equation sets.

Integrating eq 17 and rearranging the terms results in

up ) (Q- hf eu0
e) ⁄ h (18)

where Q is the volume flow rate per unit width. A pressure
gradient equal to -12ηup/h2 is required to drive a pressure-
driven flow at velocity up.38 Substituting this relation into eq 18
results in

-1
12η

∂p
∂x

)
Q- hf eu0

e

h3
(19)

Since the pressure difference between the two ends of the channel
is zero, the integral of eq 19 through the channel length should
be zero. This leads to the following expression for Q:

Q)∫x1

x2
f eu0

e

h2
dx ⁄∫x1

x2 1

h3
dx (20)

Substituting eq 20 into eq 18 results in an explicit expression
for up in terms of u0

e and together with eq 13 can be substituted

into eqs 15 and 16. By subtracting eq 15 from eq 16, we obtain
an expression for conservation of current.

∂

∂t(- 2σ
z1F)+ ∂

∂x[h(up( f1
p - f2

p)+ u0
e( f1

e - f2
e)+

(ν1z1 - ν2z2)FEf)c0 - 2ν1Eσ])
∂

∂x[h(D1 -D2)f
∂c0

∂x
-

2D1

z1F
∂σ
∂x ] (21)

In this model, we include the effect of variations of σ in eq 21
(e.g., with local ion densities) for generality. Nevertheless, for
simplicity in the next section and in Part II of this two-paper
series, we extensively study a fixed σ model. Furthermore, we
ignore the diffusion term in eq 21 (but we keep the diffusion
term in eq 15 to capture this effect in an order of magnitude
sense). With these simplifications, we can substitute for up and
u0

e from eqs 18, 20, and 13 and integrate the result in the x
direction.

{ [(ν1z1 - ν2z2)Ff- ε�
η

(f1
e - f2

e - f1
pf e + f2

pf e)]hc0 - 2ν1σ} E-

ε(f1
p - f2

p)c0

η∫x1

x2 dx

h3

∫x1

x2 f e�E

h2
dx) I

Fz1
(22)

which is an integral equation and can be solved to obtain E in
terms of closed quantities. I is the known current through the
system that appears as the integration constant.

In our solution method, we time advance eq 15 after closing
expressions of E, u0

e, and up in terms of c0. Namely, we use eqs
22, 13, and 18 (together with eq 20) to close these expressions.
Note these equations are simply supplementary equations to eq
15 and not PDEs.

Equation 15 is an unsteady, one-dimensional (along the channel
axis) partial differential equation with c0 as the main dependent
variable. Before continuing, we note that our resulting equation
is one-dimensional in space but does not neglect effects of the
second dimension. We simply integrate the effects of the
transverse (wall normal) gradients on area-averaged quantities
under the aforementioned assumptions. For example, our solution
procedure takes into account the effects of transverse gradients
of the electric double layer and velocity field. As an illustrative
example, we present in Appendix A a calculation of a two-
dimensional velocity field based on the area-averaged model
presented here. As shown in the Appendix, the solution fully
captures the recirculation regions formed by a particular micro-
to-nanochannel transition geometry. We hope to explore such
effects in more detail in a future paper.

We followed the general solution method described above in
a computational model that we developed to simulate ion transport
in a nanochannel in series with two microchannels. We present
more details of this numerical solution and numerical results in
Part II, where we also compare these to experimental measure-
ments.

Simple Model

In this section, we will consider a simplified version of the
area-averaged model. This model can be solved analytically and
used to qualitatively describe the behavior of the system such
as transition dynamics and propagation of concentration shocks
which yields important physical intuitions of the problem.

As depicted in Figure 3, we replace the concentration profiles
given by eq 5 with uniform functions across the channel cross
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section and model the electric double layers (EDLs) with charge
delta functions at the wall,

c1(x, y)) c0(x)+ -σ(x)
z1F

(δ(y+ h(x) ⁄ 2)+ δ(y- h(x) ⁄ 2)),

c2(x, y))
z1

-z2
c0(x) (23)

Here c0, is the ion concentration in the channel other than the
concentration which shields the wall charge. We included all of
the EDL charges as counterions consistent with the case of �
much higher than the thermal voltage.39 Furthermore, the
electroosmotic velocity is assumed to have a uniform profile
across the channel height with zero velocity at the wall. These
assumptions lead to f ) f e ) f 1

e ) f 2
e ) f 1

p ) f 2
p ) 1. Therefore,

from eq 22, E is given by

E) I
Fz1[F(z1ν1 - z2ν2)hc0 - 2ν1σ]

(24)

Equation 15 then reduces to

∂

∂t
(hc0)+

∂

∂x{ Qc0 +

2ν1ν2z2σI

Fz1(ν1z1 - ν2z2)[F(z1ν1 - z2ν2)hc0 - 2ν1σ]} ) ∂

∂x[hD2

∂c0

∂x ]
(25)

and Q will be (assuming zero pressure difference between the
ends)

Q)-∫x1

x2 ε�E

ηh2
dx ⁄∫x1

x2 1

h3
dx (26)

We can further simplify these equations by nondimensional-
ization. Assuming a constant wall charge and a reference length,
href, eq 25 can be nondimensionalized as follows:

∂

∂t*
(h*c*)+ ∂

∂x*(c* + I*

h*c* + 1)) 1
Pe

∂

∂x*(h* ∂

∂x*
c*) (27)

where

t* ) tQ

href
2

, x* ) x
href

, h* ) h
href

,
1

Pe
)

D2

Q
(28)

A convenient choice for href is the typical Debye length in the
problem or the length scale -σ/(Fcref).

40 With either choice, h*

is of order unity for a nanochannel and is much higher than unity
for microchannels. c* and I* are defined as

c* ) (ν1z1 - ν2z2

2ν1z1
)Fz1hrefc0

-σ
, I* ) ( ν2z2

2ν1z1
)Ihref

σQ
(29)

c*h* is the ratio of the bulk conductivity to the EDL conductivity
(a local inverse Dukhin number42). A physical interpretation of
I* is a bit complicated and requires further analysis. Using eq 24,
we see that

I*h* ) (-u2
electrophoretic

ubulk )( total conductivity
EDL conductivity)

Therefore, I*h* is a product of the coion electrophoretic-to-bulk
velocity ratio and the total-to-EDL conductivity ratio. Respec-
tively, these factors are measures of the importance of elec-
tromigration relative to bulk flow and the importance of electrolyte
conductivity relative to that of EDL ions. Note that I* is positive
and if there is zero pressure difference between the ends of the
channel, I* can be computed from the nondimensional version
of eq 26.

I* )∫x1
*

x2
* dx*

h*3
⁄∫x1

*

x2
* dx*

ν2
*h*2(c*h* + 1)

,

ν2
* )

ν2z2Fη
ε�

) ( u2
electrophoretic

-uelectroosmotic) (30)

There are essentially four nondimensional parameters which
describe the system: c*, ν2

*, Pe, and the profile of h*. In this
section, we assume that PeL/h. 1 (L is channel length) and thus
Pe effects are assumed to be confined to a small vicinity of
channel interfaces and concentration jumps (shocks). We later
revisit this assumption and examine cases with small PeL/h values.
In the latter case, we will show that molecular diffusion causes
axial boundary layers to form at channel interfaces and whose
axial length is proportional to PeL/h. For now (consistent with
the experiments of Part II), we assume that channel lengths are
much longer than these boundary layers.

Equations 27 and 30 are the simplest description for ion
transport in variable height channels and are the focus of this
study. Note these equations are obtained by combining all
conservation principles (mass, momentum, species, and electric
flux). Equation 27 has the form of a standard convection diffusion
equation with an additional nonlinear flux term, I*/(h*c*+1). This
term becomes important as the Debye length approaches within
about an order of magnitude of channel height.

Characteristic Velocity and Shock Velocity. Equation 27
can be rearranged in the following form:

(38) Batchelor, G. K. An Introduction to Fluid Dynamics, 1st ed.; Cambridge
University Press: Cambridge, UK, 1973.

(39) Hunter, R. J. Zeta Potential in Colloid Science; Academic Press: London,
1981.

(40) The nondimensional parameter -2σ/(Fcrefh) was proposed by Tessier
and Slater41 in the context of analyzing thick EDL problems in a closed
channel. It describes the ratio of surface charge density to the number density
of bulk ions.

(41) Tessier, F.; Slater, G. W. Electrophoresis 2006, 27, 686–693.
(42) Lyklema, J. Fundamentals of Interface and Colloid Science; Academic

Press: London, 1995.
(43) Miller, P. D. Applied Asymptotic Analysis; AMS Bookstore: Providence,

RI, 2006.

Figure 3. Wall normal distributions of the counterion, c1, and the co-ion,
c2, in the area-averaged model and the simple model. The area-averaged
model assumes Boltzmann distributions of ions in the wall normal direction,
and these are determined as functions of the local value of c0 (the local
Boltzmann distribution coefficient) and local wall surface charge density.
The simple model assumes uniform wall normal concentrations in the bulk
for both ions. These concentrations are net neutral (z1c1 + z2c2 ) 0) and
vary in x and t. The entire double layer is modeled as a delta distribution
of counterions shielding the local wall charge.
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∂

∂t*
(h*c*)+ (1- h*I*

(h*c* + 1)2)∂c*

∂x*
) ( c*I*

(h*c* + 1)2)dh*

dx*
+

1
Pe

∂

∂x*(h* ∂

∂x*
c*) (31)

The coefficient of the convective term, 1 - h*I*/(h*c* + 1)2, is
the velocity at which characteristics of c* travel (nondimen-
sionalized by the local bulk velocity).

U* ) 1- h*I*

(h*c* + 1)2
(32)

The characteristic velocity is the instantaneous, local velocity at
which values of c* travel in the system.43 The sign of U* determines
the direction of travel of perturbations (information) in the system.
Figure 4 shows how this characteristic velocity varies with
concentration for a typical microchannel and nanochannel.
Characteristic velocity is a monotonically increasing function of
concentration which asymptotes to unity at very high concentra-
tion. However, for moderate concentrations, negative nanochannel
U* is possible while microchannels are still in their asymptotic,
U* ) 1, limit (see Figure 4). We will see that this sign difference
plays an important role in the propagation of CP concentration
shocks. We say a channel is at the critical condition if its
characteristic velocity is zero (U* ) 0). Correspondingly, we
term positive U* channels supercritical and negative U* channels
subcritical. Table 2 provides a summary of the terminologies
that we here use to describe various conditions and properties.
Some of these terminologies are introduced in the following
sections of the paper.

The nonlinearity of eq 27 allows for development of
concentration shock waves. We first analyze the propagation of

a shock in a constant height channel. Figure 5 shows a schematic
representation of a shock which travels with velocity V. The
concentrations upstream and downstream of the shock are,
respectively, cu

* and cd
*. In a coordinate system traveling with the

shock, eq 27 will be

∂

∂x*((1-V*)c* + I*

h*c* + 1)) 1
Pe

∂

∂x*(h* ∂

∂x*
c*) (33)

The accumulation term vanishes, since the system is steady in
the moving frame. The diffusion term is small far from the shock
so that, by integrating eq 33 from far upstream to far downstream
of the shock, we obtain the following relationship between cu

*,
cd

*, and V *:

(1-V*)cu
* + I*

h*cu
* + 1

) (1-V*)cd
* + I*

h*cd
* + 1

(34)

For a shock to occur, the two characteristics (upstream and
downstream of shock) should collide with each other. Charac-
teristics, shown as arrows at the bottom of Figure 5, represent
lines of constant concentration plotted in a x versus t plot. In such
shocks, Uu

* is higher than Ud
* (otherwise, there is an expansion

wave). Therefore, a necessary condition for the existence of a
shock is cu

* > cd
* (see Figure 4 and top of Figure 5). A larger

difference between the characteristic velocities causes a stronger
and thinner shock.

For a microchannel (large h*), eq 34 can be further simplified.
We consider two cases. In the first case, neither cu

* nor cd
* are

small. Under such a condition, both Uu
* and Ud

* have nearly equal
values close to unity (see Figure 4), and eq 34 reduces to
V * ≈ 1. In other words, the shock will propagate with the speed
of the bulk flow and the flow will experience a weak shock. As
we shall see, weak shocks can occur in CP enrichment zones.
In the second case, cu

* is of order unity and cd
* is much smaller

than unity. Therefore, Ud
* can be negative and we will have a

strong shock. In this case, eq 34 simplifies to

V* ) 1- I*

cu
*(h*cd

* + 1)
(35)

If the downstream concentration becomes sufficiently small, a
shock can move upstream through the microchannel. As we shall
see, strong shocks can occur in CP depletion zones.

Table 2. Summary of Terminologies

terminology description

characteristic
velocity (U*)

axial velocity at which
concentration perturbations
travel

critical condition U* ) 0
supercritical

condition
U* > 0

subcritical
condition

U* < 0

propagation term used for CP zones which
expand (i.e., are not
stationary); used to describe
the motion of enrichment
and depletion interfaces

shock velocity
(V*)

axial velocity at which
concentration jumps travel;
propagation rate

weak shock shock between two regions
with approximately equal
characteristic velocities;
characterizes
enrichment-to-undisturbed
interface.

strong shock shock between two regions
with significantly different
characteristic velocities;
characterizes
depletion-to-undisturbed
interface.

PeL/h ratio of axial diffusion time to
axial convection time;
determines the portion of the
channel length occupied by
the extent of axial diffuse
boundary layers.

Figure 4. Nondimensional characteristic velocity versus nondimensional
local concentration for a microchannel (h* ) 100) and a nanochannel (h*

) 1) (both for I* ) 4). c* can be interpreted as an inverse Dukhin number
based on a reference length (href), while U* is nondimensionalized by local
bulkvelocity.Onepossiblec* valuebasedona typical reservoirconcentration
is indicated.For thiscase, themicrochannelhaspositivecharacteristicvelocity
(supercritical) and the nanochannel has negative characteristic velocity
(subcritical).
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Nanochannel in Series with Two Microchannels. In this
section, we consider a simple geometry to study the coupling
between CP and bulk flow. Figure 6 shows a nanochannel in
series with two microchannels, subdivided into five regions as
follows: region 1 is the anode side microchannel, 2 is the
converging zone, 3 is the nanochannel, 4 is the diverging region,
and 5 is the cathode side microchannel. This configuration will
be examined further through computations and experiments in
Part II. As we shall discuss, CP always occurs to some degree
in this configuration, while propagation may or may not occur.
Understanding of the regimes and dynamics associated with CP
propagation in this geometry is an essential step to understanding
more complex geometries, for example, with micro- and
nanochannels arranged in series and parallel.

We assume the nanochannel hydraulic resistance is much
higher than that of the microchannel so that lnano/hnano

3 . lmicro/
hmicro

3 . Furthermore, in the high PeL/h limit (we will examine
axial diffusion effects later), we assume that concentration
and � are nearly uniform through the nanochannel but can
vary with time. Therefore, eq 30 can be approximated by

I* )
ν2n

*

hn
*

(cn
*hn

* + 1) (36)

where the subscript n represents the nanochannel (region 3).
Startup and Transient Dynamics. In this section, we first

describe one scenario in which CP enrichment and depletion
zones propagate to the cathode and anode sides, respectively.
We then extend this scenario to other cases and obtain a general
criterion to predict whether CP zones propagate.

We use eq 31 to describe the evolution of the system. Prior
to the application of an external electric field, all sections of the
channel are in equilibrium with end-channel reservoirs and thus
c* is uniform and equal to the reservoir concentration, cr

*.
Immediately after current is applied, the first term in the right-
hand side of eq 31 (proportional to dh/dx) will cause local
enrichment in region 4 and local depletion in region 2 (see Figure
6). These depletion and enrichment regions will convect in the
channel in a direction governed by the local characteristic velocity.
In this particular scenario, as shown in Figure 6 (and Figure 4),
we assume that the initial characteristic velocity is negative in
the nanochannel (and positive in microchannels). The charac-
teristic velocities transport perturbations away from region 4 in

both directions into regions 3 and 5. In contrast, the depletion
in region 2 will not penetrate into neighboring regions because
the characteristic velocities are locally inward. This means the
concentration in region 2 will decrease until c* reaches small
values. The latter effect decreases the characteristic velocity (see
Figure 4).

Eventually, a sufficiently low concentration is reached in
region 2, so that according to eq 35 a shock with negative
velocity will form between regions 1 and 2. This shock propagates
upstream through the entire length of the microchannel, so that
region 1 will eventually become subcritical. On the cathode side
of the nanochannel, CP enrichment will propagate from region
4 into the nanochannel (region 3) and act to increase the
concentration of the nanochannel. This will increase U* within
the nanochannel (see Figures 6 and 4). This increase of ion
concentration proceeds until the nanochannel reaches the critical
condition. At this point, the accumulation zone ceases to penetrate
into the nanochannel and the nanochannel reaches the steady
state condition. Meanwhile, an accumulation shock will propa-
gate forward in region 5. Together, these details help estab-

(44) Saad, M. A. Compressible Fluid Flow, 2nd ed.; Prentice Hall: Upper
Saddle River, NJ, 1992.

Figure 5. Illustration of concentration shocks in a microchannel. The region upstream of the shock has higher concentration than the region downstream.
Consequently, the region upstream has higher characteristic velocity (see Figure 4). The shock thickness is governed by a balance between diffusion
and change in characteristic velocity across the shock. The shock velocity can be either positive or negative and can be determined by a control volume
analysis around the shock.

Figure 6. Top: Channel height profile in the microchannel-nanochannel-
microchannel system studied here. Five regions are identified in the
channel. Regions 1, 3, and 5 have constant areas. Area-averaged
concentration profiles (center) and characteristic velocity profiles (bottom)
for various times are shown. Shown is a case where CP propagates
where t* ) 1 (dashed line), t* ) 4 (dotted line), t* ) 16 (dash-dotted
line), and t* ) 64 (solid line). Note that an initial negative characteristic
velocity in the nanochannel blocks the penetration of the depletion zone
into region 3 and allows for advancement of the enrichment zone into
this region. This slightly increases the nanochannel concentration until
its characteristic velocity reaches zero.
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lish the steady state ion concentrations throughout the whole
system.

Global steady state will be achieved when the depletion shock
and enrichment shock leave the microchannels. At that point, the
depletion zone microchannel will be in a subcritical condition,
the nanochannel will be at the critical condition, and the
enrichment zone microchannel will be in a supercritical condition.
This situation is somewhat analogous to steady compressible
flow through converging-diverging nozzles in which the
converging section is subsonic, the throat is sonic, and the
diverging section is supersonic.44

In micro-nanochannels, the sign of the characteristic velocity
is critical in causing propagation of CP zones. As a simple rule,
negative U* (in the nanochannel or at the anode side interface)
triggers propagation of CP zones. Another interesting observation
is that if CP propagates, the nanochannel always achieves a
unique ion concentration which is independent of the initial ion
concentrations in the system (!) and which can be determined
by applying the critical condition (U* ) 0) in the nanochannel.
Physically, this important result means that nanochannel con-
centrations are not determined by “the user,” but are instead
governed by the effect of the surface chemistry which causes
surface charge density and drives the development of the problem.
The assertion that an experimentalist can always arbitrarily vary
and control steady state ion density in nanochannel systems (as
has been assumed by all studies to date4,5,7,9,14,16,18,21,45) is
therefore incorrect.

On the Conditions for the Propagation of CP. In the previous
section, we observed that if a nanochannel is initially at subcritical
condition, CP propagates. However, this is not the only case in
which propagation occurs, and, in general, the initial concentration
of the reservoir (together with ν2n

* ) determines if propagation
may or may not occur. To extend the analysis, we assume the
simplification given by eq 36 and rewrite eq 27.

∂

∂t*
(h*c*)+ ∂

∂x*(c* +
(ν2n

* ⁄ hn
*)(cn

*hn
* + 1)

h*c* + 1 )) 1
Pe

∂

∂x*(h* ∂

∂x*
c*)

(37)

At steady state, the accumulation term in eq 37 vanishes and
the sum of the nonlinear advective flux and the diffusive flux
reach a constant value through the entire domain. Away from
regions 2 and 4 (in Figure 6), diffusive flux is negligible and thus
at steady state we will have the following condition:

(tf∞)w c1
* +

(ν2n
* ⁄ hn

*)(cn
*hn

* + 1)

h1
*c1

* + 1
) cn

* + (ν2n
* ⁄ hn

*)

) c5
* +

(ν2n
* ⁄ hn

*)(cn
*hn

* + 1)

h5
*c5

* + 1
(38)

Given cn
*, we can solve eq 38 for steady state values of c1

* and
c5

*. We see that c1
* and c5

* each have two solutions (roots), one
supercritical and one subcritical solution.46 For c5

*, only the
supercritical solution is physical. A subcritical c5

* is not allowed
since the reservoir concentration entering region 5 would act to
change the sign of U* locally, creating a supercritical condition.
The two roots of the steady solution for c1

* are both possible; and
physically these are selected by the initial condition. The

supercritical solution of c1
* allows for anode reservoir information

to convect into region 1 and thus makes its concentration the
same as that of the reservoir. The subcritical solution allows for
nanochannel information to travel toward the anode side reservoir
(thus establishing channel ion densities determined by surface
chemistry and ion mobility). These super- and subcritical
conditions correspond to CP with no propagation and CP with
propagation, respectively.

CP with No Propagation. Under this condition, characteristic
lines originate at the upstream (anode) reservoir and extend
throughout the field to the downstream (cathode) reservoir. The
anode reservoir therefore determines the concentration at each
section. This leads to the following steady state solution to eq
38 (assuming sufficiently large microchannel h*):

c1
* ) c5

* ) cr
*, cn

* ) cr
* - ν2n

* ⁄ hn
* (39)

Hence, using eqs 32 and 36, we obtain the following value for
characteristic velocity in the nanochannel:

Un
* ) 1-

hn
*I*

(hn
*cn

* + 1)2
) 1-

ν2n
*

(hn
*cr

* + 1- ν2n
* )

(40)

This solution is physically possible if eqs 39 and 40 yield
positive values to both cn

* and Un
*. As a result,

cr
*hn

*>max(ν2n
* , 2ν2n

* - 1) is the validity condition for this solution.
This can be shown in a cr

*hn
*-ν2n

* diagram as in Figure 7. The
solid line shows the boundary over which CP without propagation
is physically possible. As shown, for ν2n

* > 1, this boundary
represents Un

*(tf ∞) ) 0 (see eq 40). For ν2n
* < 1, it represents

cn
*(t f ∞) ) 0 (see eq 39). Correspondingly, we will have two

different regimes where CP propagates.
CP with Propagation. As we noted earlier, negative (or zero)

characteristic velocities are key to CP propagation. Based on
this, we can identify two scenarios under which CP can propagate.
In one scenario, the nanochannel reaches zero characteristic

(45) Burgreen, D.; Nakache, F. R. J. Phys. Chem. 1964, 68, 1084–1091.
(46) A quick proof would be as follows: Both of these c5

* values result in
the same flux and thus can be the cu

* and cd
* of a stationary shock. Therefore,

the sign of their characteristic velocities should be different. Otherwise, the
shock will not remain stationary and will move in the direction of the
characteristic velocity.

Figure 7. Regimes of CP in a nondimensional reservoir concentration
(inverse Dukhin number for nanochannel) versus nondimensional co-
ion mobility. The solid line represents the boundary between initial
conditions which lead to propagating CP and nonpropagating CP. The
propagating CP zone can be further divided into three regions indicated
by dashed lines. In the first region (from right), the nanochannel’s initial
condition is subcritical (oblique dashed line). In the second region, the
nanochannel is initially supercritical but reaches the critical condition
at steady state. In the third region, the nanochannel always stays
supercritical. The steady state solutions of the concentrations of regions
1, 3 (subscript “n”), and 5 of Figure 6 are shown.
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velocity, and in the other case region 2 becomes locally critical
while the nanochannel remains supercritical.

If ν2n
* > 1, the nanochannel reaches a critical condition

(Un
*(tf ∞) ) 0) and the following will be the solution to eq 38:

cn
*hn

* ) ν2n
* - 1, c5

*hn
* ) 2ν2n

* - 1, c1
*h1

* )
ν2n

*2

(2ν2n
* - 1)

- 1

(41)

Using this solution in eq 35, the depletion shock velocity will
be

V1
* ) 1-

2ν2n
* - 1

hn
*cr

*
(42)

This solution is physically possible only for negative V 1
* (we

need the shock to propagate toward the anode). This leads to
hn

*cr
* < 2ν2n

* - 1 as the validity condition for this solution, which
is the aforementioned boundary line in Figure 7. The fact that
these two boundaries coincide confirms the uniqueness of the
solution. In other words, for a given (initial) condition, only one
of these solutions (propagating or nonpropagating CP) is
physically possible.

If ν2n
* < 1, eq 41 will not provide a physical answer to the

problem (it yields a negative concentration). The physical answer
is

c1
* ) cn

* ) 0, c5
*hn

* ) ν2n
* (43)

Using this solution, the depletion shock velocity will be

V1
* ) 1-

ν2n
*

hn
*cr

*
(44)

Note that if ν2n
* < 1, the nanochannel never reaches a critical

condition and the transition to propagating CP is triggered when
a location in region 2 reaches critical condition. Zero c* in this

case implies that there will be no coion in the nanochannel and
in regions 1 and 2. In this case, the model predicts that only EDL
ions conduct the current (note we do not account for the
dissociation of water molecules27).

Diffusion Effects. Lastly, we note the effects of diffusion in
determining the spatial extent of CP zones in both propagating
and nonpropagating cases. Figure 8 (top) shows a schematic of
the series micro-, nano-, and microchannel studied here. The
plots show steady state streamwise concentration profiles
indicating the effect of an order magnitude change of
PeL/h ) 2, 20. For simplicity of presentation, we here study
microchannels with axial lengths on the same order as the
nanochannel length.

The plot in the middle of Figure 8 is for ν2n
* ) 3, a case where

at steady state c1
* = c5

* = cr
* and so propagation of shocks does

not occur. For all values of PeL/h, axial molecular diffusion
determines the extent of diffuse axial boundary layers at micro-
to-nanochannel interfaces. For large PeL/h, these boundary layers
are small and thus the steady state concentration in the
microchannels is nearly symmetric and uniform; therefore,
polarization is negligible. As PeL/h decreases, diffuse boundary
layers at the micro-to-nanochannel interfaces grow axially, since
diffusive fluxes act against local characteristic velocities. In this
case, polarization can become significant with some polarization
inside the nanochannel itself (i.e., a concentration increase which
extends from the cathode side into the nanochannel) as shown
in Figure 8 (middle).

The bottom plot of Figure 8 is for ν2n
* ) 5, where CP propagates

(subcritical c1
* and supercritical c5

*). In this case, while the
underlying propagation is governed by characteristics, diffusion
effects again result in axial boundary layers at interfaces. Since
in this case the microchannel concentrations are different from
that of the reservoir, two additional boundary layers are observed
at the reservoir-to-microchannel interfaces. At high PeL/h, these
boundary layers are confined to the interfaces and the steady
state concentration profile is strongly polarized in the system,

Figure 8. Effect of ion diffusion on the steady state shapes and axial extent of ion depletion and enrichment zones. In the nonpropagating case (center),
the steady state values of concentrations are symmetric far from interfaces and for high PeL/h CP is negligible. In lower PeL/h regimes, diffusive
flux causes local axial boundary layers which lead to nonsymmetric concentration profiles. This diffusive dominated polarization is interpreted as
nonpropagating CP. In the propagating case (bottom), diffusion effects also cause axial boundary layers at the channel interfaces. Due to physical
mismatch of microchannels’ steady concentration with reservoir, additional boundary layers are observed at channel ends. At the low PeL/h limit,
these boundary effects even extend to the nanochannel and limit the CP propagation length.
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and nearly uniform within each microchannel. As PeL/h decreases,
these boundary layers grow. At low PeL/h, the two reservoir-
to-microchannel boundary layers can extend to the nanochannel
and influence and eventually overwhelm propagation effects. In
the limit of very high diffusion fluxes (low PeL/h), the depletion
shock will have an axial thickness of order channel length and
“propagation” of CP might not be observable in a transient
measurement. However, we still classify this case as propagating
CP, since the underlying characteristics dictate outward propaga-
tion of these enrichment and depletion zones (albeit balanced by
diffusion). In contrast to the nonpropagating case, axial diffusion
tends to limit the extent of enrichment and depletion zones created
by propagating CP.

We note Rubinstein and Zaltzman29 and Rubinshtein et al.47

analyzed concentration polarization across an ion exchange
membrane and showed a “local” depletion zone adjacent to the
membrane followed by a diffuse layer emerging from the
reservoir. This is very similar to the depletion zone in the bottom
plot of Figure 8 for the low PeL/h case. In an earlier analysis,
Mishchuk and Takhistov25 reported similar features for CP caused
by ionic current into and around ionically conductive particles.
Given their published parameters, we estimate that all of these
experimental studies explored a regime which we here refer to
as the “propagating CP”, but at low PeL/h. As mentioned earlier,
in such a regime, propagation of characteristic lines is indeed
outward away from the nanochannel but the size of CP zones
is reduced due to diffusion boundary layers which form at
reservoir-to-channel interfaces. The result is enrichment and
depletion regions which form, but whose maxima and minima,
respectively, move negligibly and propagation dynamics are
difficult to observe (compared to the high PeL/h regime). This
in fact is a strong motivation for the current work as the high
PeL/h regime is especially important for fluidic devices which
integrate nanochannel sections into networks of, say, centimeter-
long microchannels (and which operate with typical time scales
of the order of 10 s and longer). We will examine such a system
in Part II.

Conclusions

We developed two models for the analysis of concentration
polarization at micro-nanochannel interfaces. Numerical solutions
using the area-averaged model and its comparison to experiments
will be given in Part II of this two-paper series. Here, we have
shown that characteristic analysis yields significant insight into
the dynamics of CP and development of depletion and enrichment
zones. The analysis applied to the simple model identifies two
CP regimes (with and without propagation). For negative wall
charge, if CP propagates, the model predicts a region of high
concentration which propagates from the cathode side nano-
channel-microchannel interface into the cathode side micro-
channel, and a region of very low concentration which propagates
from the anode side interface into the anode side microchannel.
In the regime without propagation, CP causes stationary regions
of local high and low concentration at the cathode and anode
side interfaces, respectively. Using characteristic analysis, the
model describes the transient dynamics and steady state solutions
for CP.

The following points (mostly summarized in Figure 7) are
perhaps the most interesting results of the current analysis of a
nanochannel positioned between two microchannels:

1 In this system with a nanochannel between two micro-
channels, some amount of CP will always occur, but CP

may or may not propagate. If PeL/h is large and CP does
not propagate, then polarization effects are negligible.

2 The important parameters determining whether CP propa-
gates are hn

*cr
* (a nanochannel inverse Dukhin number based

on reservoir concentration) and ν2n
* (ratio of electrophoretic

velocity of coions to electroosmotic velocity). Other
parameters such as microchannel dimensions, magnitude
of applied current, axial diffusion, and so forth do not play
a role in determining propagation. CP may occur even if
double layers do not overlap.

3 If CP does not propagate, the steady state ion concentration
in the nanochannel is determined by the reservoir ion
concentration cr

* and the nanochannel properties via ν2n
* /hn

*,
as shown in Figure 7. Here, axial diffusion governs the
extent of diffuse boundary layers at the micro-to-nanochan-
nel interfaces. As PeL/h decreases from high values,
polarization regions become observable and extend over
longer distances into the channel. The nanochannel itself
becomes polarized.

4 If CP propagates, the steady state ion concentrations in the
nanochannel and microchannels fall into three regimes as
shown in Figure 7. For large PeL/h, the final ion concentra-
tion in each channel section (in all three regimes) is nearly
uniform and independent of the initial condition. These
concentrations are determined by surface chemistry,
nanochannel height, microchannel height, and ion mobility
(via ν2n

* , hn
*, and h1

*). Under such a condition, characteristics
of c* will emerge from the nanochannel toward the end
boundaries and thus information (perturbations) cannot
propagate into the system from the reservoir (e.g., so that
the final nanochannel ion density is independent of the initial
value in the reservoir!). In cases where CP propagates,
diffusion effects cause axial boundary layers at channel and
reservoir interfaces. For low values of PeL/h, gradients
associated with these boundary layers can penetrate
throughout the entire channel system, and so the extent of
propagation of CP is suppressed by diffusive effects.

5 As a rule of thumb, propagating CP occurs for large
ν2n

* /(hn
*cr

*). This can be explained intuitively. For large
concentrations, current carried by the EDLs becomes
negligible and the composite channel system behaves
like a typical microchannel. Thus, even CP becomes
negligible. On the other hand, to create propagating CP
and achieve a subcritical condition in the anode side
microchannel, the system needs to transmit information
upstream and that is only possible with negative ions of
high enough mobility.
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Appendix A: Two-Dimensional (2D) Reconstruction of
Area-Averaged Model Solutions

Figure A1 shows an example solution of recirculation regions
(in flow velocity) resulting from internal pressure gradients
induced by electrokinetic flow at an interface between a
microchannel and a nanochannel. To obtain this, we first solve
for the axial profile of the quantity c0 using the area-averaged
model. The solution for c0(x,t) yields the area-averaged pressure-
driven flow, up, and the electroosmotic Helmholtz-Smo-

(47) Rubinshtein, I.; Zaltzman, B.; Pretz, J.; Linder, C. Russ. J. Electrochem.
2002, 38, 853–863.
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luchowski velocity, u0
e (see the solution method to the area-

averaged model). Further, consistent with the model assumptions,
at each axial location, the parallel parabolic velocity profile is
used to reconstruct the axial component of the 2D pressure-
driven velocity. The 2D electroosmotic velocity field is recon-
structed using solution of the Poisson-Boltzmann equation
(ue(y) ) u0

e(1 - ψ*/�*)). The vertical component of the velocity
field is obtained by integrating the local continuity equation at
each axial location. The figure shows the velocity field streamlines
obtained from this reconstruction. As shown, two-dimensional
vortex structures are captured fairly well by the model and the
streamlines exhibit the impenetrable wall constraint (the no slip
condition is automatically satisfied by the reconstruction). We
hope to further study the creation and influence of these vortices
on the flow in a future paper. These recirculations are a result
of the difference in flow rate per current between the nano- and
microchannel sections. For now, we note the 2D predictions are
consistent with the work of Park et al.18 and Postler et al.31 who
also observed recirculation regions in similar flow fields.

LA803317P

Figure A1. Example prediction of recirculation vortices resulting from
our area-averaged model in a 2D (infinite width) channel. The micro-
to-nanochannel height is arbitrarily taken to vary exponentially from 1
µm to 50 nm. We assume surface charge densities of -0.0062 C/m2 for
the microchannel and -0.0043 C/m2 for the nanochannel with smooth
variation at the interface. The applied current density is 4 × 10-5 A/m.
Other parameters include the nominal concentration (cr) 1 mM), binary
buffer valences of 1 and -2, and respective diffusivities of 1.5 × 10-9

and 5.4 × 10-10 m2/s.

3908 Langmuir, Vol. 25, No. 6, 2009 Mani et al.

D
ow

nl
oa

de
d 

by
 S

T
A

N
FO

R
D

 U
N

IV
 G

R
E

E
N

 L
IB

R
 o

n 
Ju

ne
 2

9,
 2

00
9

Pu
bl

is
he

d 
on

 M
ar

ch
 1

0,
 2

00
9 

on
 h

ttp
://

pu
bs

.a
cs

.o
rg

 | 
do

i: 
10

.1
02

1/
la

80
33

17
p


